Metaprogramming in Scala 2.10

Eugene Burmako
EPFL, LAMP

28 April 2012
(updated on 6 January 2013 for 2.10.0-final)

Agenda

Intro

Metaprogramming

Metaprogramming is the writing of computer programs
that write or manipulate other programs or themselves as
their data.

—Wikipedia

Compiler

Q: How to enable metaprogramming?
A: Who has more data about a program than a compiler?

Let's expose the compiler to the programmer.

Reflection

In 2.10 we expose data about programs via reflection API.

The API is spread between scala-reflect.jar (interfaces and
implementations) and scala-compiler.jar (runtime
compilation).

Hands on

Today we will learn the fundamentals of reflection APl and learn to
learn more about it via a series of hands-on examples.

Macros

Q: Hey! What about macros?

A: Reflection is at the core of macros, reflection provides macros
with an API, reflection enables macros. Our focus today is
understanding reflection, macros are just a tiny bolt-on.

For more information about macros, their philosophy and
applications, take a look at my other talks:
http://scalamacros.org/talks.html.

http://scalamacros.org/talks.html

Agenda

Reflection

Core data structures

> Trees
» Symbols
> Types

C:\Projects\Kepler>scalac -Xshow-phases
phase name id description
parser 1 parse source into ASTs, simple desugaring
namer 2 resolve names, attach symbols to named trees
typer 4 the meat and potatoes: type the trees
pickler 8 serialize symbol tables

I'll do my best to explain these concepts, but it's barely possible to
do it better than Paul Phillips. Be absolutely sure to watch the
Inside the Sausage Factory talk.

http://skillsmatter.com/podcast/scala/scalac-internals

Trees

Short-lived, mostly immutable, mostly plain case classes.

Apply(Ident ("println"), List(Literal(Constant("hi!"))))

A list of all trees can be found in docs and in sources.

http://www.scala-lang.org/api/current/index.html#scala.reflect.api.Trees
https://github.com/scala/scala/blob/v2.10.0/src/reflect/scala/reflect/api/Trees.scala

Learn to learn

>

-Xprint:parser (for naked trees)
-Xprint:typer (for typechecked trees)
-Yshow-trees and its cousins

ru.showRaw(ru.reify(...)) // where ru stands for
scala.reflect.runtime.universe

also check out the optional parameters of showRaw!

Q: Where do | pull these compiler flags from?

A: scala/tools/nsc/settings/ScalaSettings.scala

https://github.com/scala/scala/blob/v2.10.0/src/compiler/scala/tools/nsc/settings/ScalaSettings.scala

-Yshow-trees

// also try -Yshow-trees-stringified
// and -Yshow-trees-compact (or both simultaneously)
>scalac -Xprint:parser -Yshow-trees HelloWorld.scala
[[syntax trees at end of parser]]// Scala source:
HelloWorld.scala
PackageDef (
"<empty>"
ModuleDef (
0
"Test"
Template (
"App" // parents
ValDef (

private
n n

<tpt>
<empty>
)

showRaw

// ru stands for scala.reflect.runtime.universe
scala> ru.reify{ object Test { println("Hello World!") } }
res0: reflect.runtime.universe.Expr[Unit] = ...

scala> ru.showRaw(res0.tree)
resl: String = Block(List(ModuleDef (
Modifiers(),
newTermName ("Test"),
Template (List (Ident (newTypeName ("AnyRef"))), List(
DefDef (Modifiers(), nme.CONSTRUCTOR, List(),
List(List()), TypeTree(),
Block(List (Apply(Select (Super(This (tpnme.EMPTY),
tpnme.EMPTY), nme.CONSTRUCTOR), List())),
Literal(Constant(())))),
Apply(Select(Select(This(newTypeName("scala")),
newTermName ("Predef")), newTermName("println")),
List(Literal(Constant ("Hello World!")))))))),
Literal(Constant(())))

Symbols

Link definitions and references to definitions. Long-lived, mutable.
Declared in scala/reflect/api/Symbols.scala, documented
somewhere nearby.

def fool[T: TypeTagl (x: Any) = x.asInstanceOf [T]
foo[Long] (42)

foo, T, x introduce symbols (T actually produces two different
symbols, but that's a different story). DefDef, TypeDef, ValDef -
all of those subtype DefTree.

TypeTag, x, T, foo, Long refer to symbols. They are all
represented by ldents, which subtype RefTree.

Symbols are long-lived. This means that any reference to Int (from
a tree or from a type) will point to the same symbol
instance.

https://github.com/scala/scala/blob/v2.10.0/src/reflect/scala/reflect/api/Symbols.scala
http://www.scala-lang.org/api/current/index.html#scala.reflect.api.Symbols

Learn to learn

» -Xprint:namer or -Xprint:typer

> -uniqid

» symbol.kind and -Yshow-symkinds

> type -v

» showRaw(tree, printlds = true, printKinds = true)

» Don't create them by yourself. Just don't, leave it to Namer.
In macros most of the time you create naked trees, and Typer
will take care of the rest. Sometimes it inevitable, though:
http://stackoverflow.com/questions/11208790.

http://stackoverflow.com/questions/11208790/how-can-i-reuse-definition-ast-subtrees-in-a-macro

-uniqgid and -Yshow-symkinds

>cat Foo.scala
def fool[T: TypeTag] (x: Any) = x.asInstanceOf [T]
foo[Long] (42)

// there is a mysterious factoid hidden in this printout!
>scalac -Xprint:typer -uniqid -Yshow-symkinds Foo.scala
[[syntax trees at end of typer]]// Scala source: Foo.scala
def foo#8339#METH

[T#8340#TPE >: Nothing#4658#CLS <: Any#4657#CLS]

(x#95294#VAL: Any#4657#CLS)

(implicit evidence$1#9530#VAL:

TypeTag#7861#TPE [T#8341#TPE#SK0])
: T#8340#TPE =
x#9529#VAL . asInstanceOf#6023#METH [T#834 1#TPE#SK0] ;

Test#14#MODC. this.foo#8339#METH [Long#1641#CLS] (42)
(scala#29#PK.reflect#2514#PK. ‘package ‘#3414#PK0
.mirror#3463#GET . TypeTag#10351#M0D . Long#10361#GET)

‘type -v

We have just seen how to discover symbols used in trees.
However, symbols are also used in types.

Thanks to Paul (who hacked this during one of Scala Nights)
there's an easy way to inspect types as well. Corresponding REPL
incantation is shown on one of the next slides.

Starting from 2.10.0-M5 you can also use showRaw (defined in all
universes: the scala.reflect.runtime.universe, all macro context
universes) to print out raw structure of types.

Types

Immutable, long-lived, sometimes cached case classes declared in
scala/reflect/api/ Types.scala (also see docs).

Store the information about the full wealth of the Scala type
system: members, type arguments, higher kinds, path
dependencies, erasures, etc.

https://github.com/scala/scala/blob/v2.10.0/src/reflect/scala/reflect/api/Types.scala
http://www.scala-lang.org/api/current/index.html#scala.reflect.api.Types

Learn to learn

» -Xprint:typer

> -Xprint-types

> type -v

» showRaw(type, printlds = true, printKinds = true)

> -explaintypes

-Xprint-types

-Xprint-types is yet another option that modifies tree printing.
Nothing very fancy, let's move on to something really cool.

‘type -v

scala> :type -v def impl[T: c.TypeTag] (c: Context) = 777

// Type signature
[T] (c: scala.reflect.macros.Context) (implicit evidence$l:

c.TypeTag[T])Nothing

// Internal Type structure
PolyType (
typeParams = List(TypeParam(T))
resultType = MethodType (

params = List(TermSymbol(c: ...))
resultType = MethodType(
params = List(TermSymbol (implicit evidence$l: ...))

resultType = TypeRef (
TypeSymbol(final abstract class Nothing)
)
)
)
)

showRaw (available since 2.10.0-M5)

scala> object 0 {

def impl[T: c.TypeTag] (c: Context) = 777
}
defined module O

scala> val meth = ru.reify(0).staticType.typeSymbol.
typeSignature.member (newTermName ("impl"))
meth: reflect.runtime.universe.Symbol = method impl

scala> println(showRaw(meth.typeSignature))
PolyType(
List (newTypeName ("T")),
MethodType (List (newTermName("c")),
MethodType (List (newTermName ("evidence$l")),
TypeRef (ThisType(scala), scala.Nothing, List()))))

-explaintypes

>cat Test.scala
class Foo { class Bar; def bar(x: Bar) = 777 }

object Test extends App {
val fool = new Foo
val foo2 new Foo
foo2.bar (new fool.Bar)

}

// prints explanations of type mismatches
>scalac -explaintypes Test.scala
Test.fool.Bar <: Test.foo2.Bar?
Test.fool.type <: Test.foo2.type?
Test.fool.type = Test.foo2.type?
false
false
false
Test.scala:6: error: type mismatch;

Big picture

> Trees are created naked by Parser.

» Both definitions and references (expressed as ASTs) get their
symbols filled in by Namer (tree.symbol).

» When creating symbols, Namer also creates their completers,
lazy thunks that know how to populate symbol types
(symbol.info).

» Typer inspects trees, uses their symbols to transform trees
and assign types to them (tree.tpe).

» Shortly afterwards Pickler kicks in and serializes reachable
symbols along with their types into ScalaSignature
annotations.

Agenda

Universes

Universes

Universes are environments that pack together trees, symbols and
their types.

» Compiler (scala.tools.nsc.Global) is a universe.

> Reflection runtime (scala.reflect.runtime.universe) is a
universe too.

» Macro context (scala.reflect.macros.Context) holds a
reference to a universe.

Mirrors

Mirrors abstract population of symbol tables.

Each universe can have multiple mirrors, which can share symbols
with each other within their parent universe.

» Compiler loads symbols from pickles using its own *.class
parser. It has only one mirror, the rootMirror.

» Reflective mirror uses Java reflection to load and parse
ScalaSignatures. Every classloader corresponds to its own
mirror created with ru.runtimeMirror(classloader).

» Macro context refers to the compiler's symbol table.

Entry points

Using a universe depends on your scenario.

» You can play with compiler’s universe (aka global) in REPL's
:power mode.

» With runtime reflection you typically go through the Mirror
interface, e.g. scala.reflect.runtime.currentMirror, then

cm.reflect and then you can get/set fields, invoke methods,
etc. Read up more in our docs.

» In a macro context, you import c.universe._ and can use
imported factories to create trees and types (don't create
symbols manually, remember?).

http://www.scala-lang.org/api/current/index.html#scala.reflect.api.Mirrors

Path dependency

An important quirk is that all universe artifacts are path-dependent
on their universe. Note the reflect.runtime.universe prefix in the
type of the result printed below.

scala> ru.reify(2.toString)
resO: reflect.runtime.universe.Expr[String] =
Expr[String] (2.toString())

When you deal with runtime reflection, you simply import
scala.reflect.runtime.universe._, and enjoy, because typically there
is only one runtime universe.

However with macros it's more complicated. To pass artifacts
around (e.g. into helper functions), you need to also carry the
universe with you. Or you can employ the technique outlined in
our docs.

http://docs.scala-lang.org/overviews/macros/overview.html#writing_bigger_macros

Thread safety

Unfortunately, in its current state released in Scala 2.10.0,
reflection is not thread safe.

Check out the documentation at
http://docs.scala-lang.org/overviews/reflection /thread-safety.html

for a detailed explanation.

http://docs.scala-lang.org/overviews/reflection/thread-safety.html

Agenda

Demo

Inspect members

scala> import scala.reflect.runtime.{universe => ru}
import scala.reflect.runtime.{universe=>ru}

scala> trait X { def foo: String }
defined trait X

scala> ru.typeOf [X]
resO: reflect.runtime.universe.Type = X

scala> resO.members

resl: reflect.runtime.universe.MemberScope = Scopes(
method $asInstance0f, method $isInstance0f, method
synchronized, method ##, method !=, method ==, method
ne, method eq, constructor Object, method notifyAll,
method notify, method clone, method getClass, method
hashCode, method toString, method equals, method
wait, method wait, method wait, method finalize,
method asInstance0f, method isInstanceOf, method !=,
method ==, method foo)

Analyze and invoke members

This thing is quite involved for a single slide.
Check out our reflection guide: analysis, invocation.

http://www.scala-lang.org/api/current/index.html#scala.reflect.api.Symbols
http://www.scala-lang.org/api/current/index.html#scala.reflect.api.Mirrors

Defeat erasure

scala> def foo[T](x: T) = x.getClass
foo: [T](x: T)Class[_ <: T]

scala> foo(List(1, 2, 3))
resO: Class[_ <: List[Int]] = class
scala.collection.immutable.$colon$colon

scala> def fool[T: ru.TypeTag] (x: T) = ru.type0f [T]
foo: [T](x: T)(implicit evidence$l: ru.TypeTagl[T])ru.Type

scala> foo(List(1, 2, 3))
resl: reflect.runtime.universe.Type = List[Int]

scala> ru.showRaw(resl)

res2: String =
TypeRef (ThisType(scala.collection.immutable),
scala.collection.immutable.List,
List(TypeRef (ThisType(scala), scala.Int, List())))

Compile at runtime

import scala.reflect.runtime.universe._

import scala.tools.reflect.ToolBox

val tree = Apply(Select(Literal(Constant(40)),
newTermName ("$plus")), List(Literal(Constant(2))))

val cm = ru.runtimeMirror(getClass.getClassLoader)

println(cm.mkToolBox() .eval(tree))

Toolbox is a full-fledged compiler (the scala.tools.reflect. ToolBox
import requires scala-compiler.jar on the classpath). Unlike the
regular compiler, it uses Java reflection encapsulated in the
provided mirror to populate its symbol table.

Toolbox wraps the input AST, sets its phase to Namer (skipping
Parser) and performs the compilation into an in-memory
directory.

After the compilation is finished, toolbox fires up a classloader that
loads and lauches the code.

Agenda

Macros

Macros

In our hackings above, we used the runtime universe
(scala.reflect.runtime.universe) to reflect against program
structure.

We can do absolutely the same during the compile time. The
universe is already there (the compiler itself), the API is there as
well (scala.reflect.api.Universe inside the macro context).

We only need to ask the compiler to call ourselves during the
compilation (currently, our trigger is macro application and the
hook is the macro keyword).

The end.

No, really

That's it.

Agenda

Summary

Summary

> In 2.10 you can have all the information about your program
that the compiler has (well, almost).

» This information includes trees, symbols and types. And
annotations. And positions. And more.

> You can reflect at runtime (scala.reflect.runtime.universe) or
at compile-time (macros).

https://github.com/scala/scala/blob/v2.10.0/src/reflect/scala/reflect/api/Universe.scala

Thanks!

eugene.burmako®@epfl.ch

mailto:eugene.burmako@epfl.ch

